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The Einstein field equations (R~offiO) are seen as possible candidates for a set 
of unified field equations. Three solutions of these field equations are used for a 
new interpretation and reformulation of the refractive index of an isotropic 
material medium. The new formulation explains the basic features of "anoma- 
lous" refractive index dispersion curves. It also predicts that the refractive index 
is a function of the angle of incidence when the plane in which the measure- 
ment  is made is not tangential to the surface of the spherical gravitating mass, 
thereby providing a suitable test for the theory and hence of general relativity. 

1. INTRODUCTION 

The relationship between the refractive index of a material medium 
and the free space wavelength of electromagnetic radiation (henceforth 
EMR) has long been a subject of study (Cauchy, 1830; Koch, 1909; Born 
and Wolf, 1959; Wahlstrom, 1969). This work is limited to isotropic media 
where the refractive index is independent of direction or position in the 
medium when the effect of any gravitational field present is not included. 
In the passage of EMR through a material medium it is generally accepted 
that its velocity changes. This velocity change is accompanied by a 
wavelength change, the frequency remaining constant. Classically 
(Wahlstrom, 1969; Gall, 1979), this results in 

nc =)~/)~ (1) 

where nc is the classical refractive index for the medium at the particular 
free space value of the wavelength (A), and ?~n is the corresponding 
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wavelength in the medium. This classical formulation of the refractive 
index suggests a direct linear dependence of n on X, which is not in 
agreement with the generally observed wavelength dependence (Cauchy, 
1830; Koch, 1909; Born and Wolf, 1959; Wahlstrom, 1969). Thus various 
empirical relationships have been derived to try to express the actually 
observed relationship. Examples are the Cauchy equations (Cauchy, 1830; 
Born and Wolf, 1959; Wahlstrom, 1969): 

o r  

n=l+a+(b/~)+(c/#)+... 

n=A+(B/~)+(C/#)+... 

(2a) 

(2b) 

where a, b, c, A, B, and C are constants. These equations suggest an 
inverse square dependence of n on 2% although higher-order terms (1/~ 4) 
are also present. These equations are generally used in the visible spectral 
region for substances that do not absorb strongly. There is also the Koch 
equation (Koch, 1909) derived for gases (hydrogen, oxygen, and air) in the 
visible region of the spectrum: 

n2--1 =a,  + b, / (X2 - X2o) (3) 

where a 1, b], and }~0 are constants. 
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Fig. 1. Anomalous refractive index dispersion curve. Solid line: generally observed experi- 

mental curve; dashed-line curve: predicted behavior for n ~ in the inflection region. 
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Indeed the refractive index does generally decrease as the wavelength 
is increased in the visible region of the spectrum. In the region of an 
absorption band, however, an increase with the wavelength is also seen. 
The characteristic dependence in this  region is referred to as "anomalous" 
refractive index dispersion curves (Born and Wolf, 1959; Wahlstrom, 1969; 
Kagarise, 1960), shown in Figure 1. The behavior at the inflection points 
(Kagarise, 1960) is often not shown (when shown it is generally inferred) 
because of the difficulty of measuring the refractive index in this region. 
Any theoretical explanation for these curves must be able to account both 
for an inverse and a direct dependence of n on )~ as well as for inflection 
points where the dependence changes direction. 

Mention is also made here of a related experiment (for reasons that 
will become obvious later in the paper) of current interest. In measuring 
the relativistic bending (Fomalont and Sramek, 1975) or the excess time 
delay (Shapiro et al., 1971) of radio waves in the gravitational field of the 
sun a direct square dependence on )~ has generally been observed. This has 
been attributed to refraction by the solar corona. 

2. THEORETICAL BACKGROUND 

In a recent series of papers (C. A. Gall, 1979; C. Gall and O. Gall; 
1979; C. A. Gall, 1979) a new point of view has been introduced on this 
phenomenon of refraction of EMR by material media based on general 
relativity. It was first necessary to include the effect of a material medium 
in the metric coefficients of the line element for an isotropic medium (C. 
A. Gall, 1979) in the absence of a gravitational field. The same criterion 
was applied as for the gravitational field, which is that the line element 
should satisfy the Einstein field equations (R~,o ffi 0). Essentially these field 
equations can then be considered as a set of unified field equations since 
the material medium and the gravitational field are now treated on the 
same basis (Adler et al., 1975; Einstein, 1953). Three solutions (C. A. Gall, 
1979) were suggested, two of which gave the same classical dependence for 
the refractive index [equation (1)]. The third solution 

ds2=()~2/)~E)c2dtZ-()~2/)~2)[dr2+r2(dOZ+sin20d~2)] (4) 

gave a new dependence for the refractive index: 

n,= hz /)~21 (5) 

where n~ is now the relativistic refractive index. Since this third solution 
gives a square dependence on h it is the more interesting result. 
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The fact that the velocity of EMR changes in a gravitational field 
impfies that its wavelength must also change. This concept led to an 
alternative solution (C. Gall and O. Gall, 1979) of the field equations 
(Rzo =0) for free space in the presence of a spherically symmetric gravita- 
tional field: 

d s 2 = [  1-(a/X2r)]c2dtZ-dr2/[ 1-(a/~2r)]-r2(ao 2 + sin2 oath 2) (6) 

This result is interesting because of the inverse F, 2 dependence of the metric 
coefficient of the time coordinate. 

In a third paper (C. A. Gall, 1979), a solution was obtained for these 
field equations (R~o =0) for an isotropic material medium in the presence 
of a spherically symmetric gravitational field: 

]c at  

( dr2/ [1-(a/X2r) ] + r2(d0 2 +sin 2 oa~ 2) } (7) 

This third solution is essentially a combination of the previous two. It 
shows that when one measures the refractive index of a material medium, 
it is essentially impossible to separate from it in a purely additive way the 
relativistic bending (Fomalont and Sramek, 1975) due to any gravitational 
field present. [The converse operation (Fomalont and Sramek, 1975) is also 
true.] This is a direct consequence of the nonlinear nature (Adler et al., 
1975) of the field equations (R,o= 0). The generally accepted formulation 
of the refractive index [equation (1)] is essentially prerelativistic and as 
such could not have recognized this problem. It is therefore necessary to 
seek a new formulation. This problem will become even more obvious with 
the advent of experiments in orbiting laboratories or on other celestial 
bodies (such as the moon or mars) with gravitational fields and atmo- 
spheres different from those at the surface of the earth. 

3. POSSIBLE FORMULATIONS 

(A) A measurement of the refractive index generally involves very 
small distances so that the coordinate velocity of the EMR can be used. 
From equation (7) one obtains 

r(dO/dt)-~rsinO(dd~/dt)~c(~21/~2)[1-(a/~21r)]l/2 (8a) 

(dr/at)=c(~2/X2) [ 1-(a/~]r) ] (8b) 



"Anomalous" Refractive Index Dispersion Curves 893 

The first idea that possibly comes to mind for defining the refractive index 
is to compare the coordinate velocity with the velocity of EMR in free 
space in the absence of a gravitational field (i.e. c). This gives 

n~'~ '/2 (9a) 

n;=•/[h]--(a/r)] (9b) 

The superscripts 0 and r indicate that the refractive index is measured in a 
plane tangential to the spherical gravitating body, while r indicates a 
measurement in the radial direction. This in itself is an important result 
since it means that the refractive index depends on the plane in which it is 
measured. Previous experiments could not have been expected to take this 
into consideration. The tangential plane is probably the most convenient to 
define and to carry out a measurement of the refractive index by means of 
angles. It is therefore interesting to examine the functional form of the 
expression (9a): 

n~'r ~.,, r) (10a) 

x,=/(x) (lOb) 

It should be noted of course that n~ '* also depends on a, which is 
determined by the particular gravitating body, and that A 1 depends on the 
particular medium. For points at the surface of the spherical gravitating 
body ( r =  const) 

(dngr" q~/d~.,)= { 2~./[ ~'~ --(~.2/r )] l/2}(d~/d~,l) 

-A214h]-(2e&2/r)]/{2[A41-(ah]/r)]3/2 ) (11) 

At an inflection point ( d n e r ' r  -~ O; SO that 

(d)~/dh,)=X[2)~l-(a/Xtr)]/{2[X2-(a/r)]} (12) 

At such a point also (dX/d)~l)=O; so that 

)H =(a/2r) l/~ (13) 

where the positive root was chosen since Al >0.  The derivative of n,  ~ can 
also be calculated with respect to ~ and the result equated to zero to obtain 



another condition for an inflection point. However, (d~l/dX) can be more 
simply obtained: 

(da,/dX)= } (12a) 

It is also to be expected that at this inflection point (d?~l/dh)=O, so that 

X, =(a/r) '/2 (14) 

These two results suggest that ?~! varies between (a/2r) 1/20ts minimum 
value) and (a/r) 1/2 (its maximum value). However, if equation (13) is 
substituted into (9a) an imaginary value is obtained for the refractive 
index. This suggests that this formulation of the refractive index should be 
reexamined. 

(B) In an angle-type measurement of the refractive index one com- 
pares the angles of incidence (reference medium) and refraction (sample 
medium). However, the gravitational field present also affects the reference 
medium. This suggests defining the refractive index by comparison with 
the velocity of EMR in free space in the presence of the gravitational field 
[equation (6)]. This leads to 

n~'~'--'(?~2/X]){[1-(a/~2r)]/[1-(a/~]r)]} '/z (15a) 

n ;= [ X 2 - ( a / r  ) ] / [  2~] - (a / r  )] (15b) 

Differentiating the tangential value of the refractive index [equation (15a)] 
gives 

( an~, ~'/dXl) --( d?~/dXl)[ 2?d-( aX/r ) ] 

/{[ ],,2} 
- [ 2X] -(a?~,Ir) ] / [  ~I - ( a ~ ] / r )  ]3/2 (16) 

An inflection point is again obtained by putting (dn~ and 
(dh/dhO=O. Thus 

(dX/dX,)=[ ~3-(aX/r) ][2X]-(a/r) ] /{ [  ~]-(aX,/r) ][2X2-(ot/r)]} 
(17) 

Putting equation (17) equal to zero gives hi ----(t~/2r) ~/2 which is the same 
result as equation (13). By considering (dn~" § another inflection point 
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is found at h 1 =(ot//r) 1/2 which is the same result as equation (14). 
Remembering that h/> h I and substituting (13) into (15a) gives a real value 
for the refractive index provided that h<(a/r) 1/2. Substituting (14) into 
(15a) gives an infinite value for the refractive index at the other inflection 
point. This then is an acceptable formulation and meets the criteria 

0,~ increases and others where it originally set. There are regions where n r 
decreases with respect to h. [The dependence also approximates the ob- 
served (Cauchy, 1830; Koch, 1909; Born and Wolf, 1959; Wahlstrom, 
1969) square law from the form of (15a).] And there are inflection points 
where it is a minimum [when h t =(a/2r) 1/2] and others where it reaches 
the maximum value of infinity [when h 1 -~(ot/r)l/2]. This is all in agree- 
ment with the functional form of Figure 1. 

(C) The formulation of the refractive index in Section B is ideally 
suited for a gravitating body like the moon which is devoid of an atmo- 
sphere. It can be applied on the earth but this requires the use of an 
artificial vacuum. Past work has for obvious reasons generally used the 
surface atmosphere (air) as the reference medium. It is therefore interesting 
to reformulate the refractive index by comparison with the velocity of 
EMR in such a reference medium (which varies from planet to planet) and 
in the presence of the gravitational field. This gives 

n~ (18a) 

n:= [ h2~-(cx/r) ]/[ h2-(a/r) ] (18b) 

These equations are essentially similar to (15a) and (15b) with ?% (the 
wavelength in the atmosphere) replacing h. The only problem is that one 
has to remember that h a is not necessarily greater than h! in all regions of 
the spectrum. Should this occur (h a < h 1) the formulation breaks down as 
the refractive index is then less than unity. This has generally been 
recognized by experimenters who use nitrogen in the uv region (where 
oxygen absorbs) and then switch to an artificial vacuum further in the uv 
where nitrogen also absorbs-- the so called vacuum uv. 

4. CONCLUSION 

The original relativistic refractive index defined in equation (5) is now 
seen in retrospect as not including the effect of the gravitational field. To 
some extent this behavior is approached in an orbiting laboratory (in free 
fall) since a is now determined by the mass of the laboratory, which is 
usually much less than that of the planetary body. It should be remem- 
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bered, however, that at very small free space wavelengths (2~) even a small 
value of a, coupled with small values of r, can have an appreciable effect. 
The a factor should therefore always be included in the general formula- 
tion. 

In past measurements of the relativistic bending of E M R  (and related 
experiments) in the gravitational field of the sun, an important factor has 
been the refractive contribution (Fomalont and Sramek, 1975; Shapiro et 
al., 1971) of the solar corona. This analysis has been done from the 
opposite point of view, in which refraction by a medium is affected by 
gravitational bending. Indeed there is really no essential difference be- 
tween the two types of measurements if one accepts the present approach, 
which leads to wavelength-dependent solutions of the field equations 
(R~o=0).  The study of the bending in the gravitational field of the sun, 
however, is much more complicated since it involves (among other prob- 
lems) large distances so that the coordinate velocity (which depends on the 
coordinate time) is no longer satisfactory. Measuring the refractive index, 
on the other hand, is a much simpler experiment and much easier to 
interpret. 

One suggestion for testing the present theory and consequently gen- 
eral relativity involves measuring the refractive index by means of direct 
measurements of the angles of incidence and refraction. When the plane in 
which the measurement is carried out coincides with the tangential plane, 
then the refractive index should be independent of angle. If, however, the 
plane of measurement has a radial component then there should be an 
angular dependence. The measurements should be made in regions where 
there are large changes of n with 2~. Indeed previous studies have indicated 
just such an angular dependence for concentrated solutions (Wahlstrom, 
1969), but  such studies did not specify the plane in which the measure: 
ments were done. A systematic study of this problem would be of great 
interest. 
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